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Abstract
Automated plant detection plays a pivotal role in various domains, including agriculture, environmental monitoring, and 
biodiversity conservation. In this paper presents a novel deep learning model specifically designed for classifying the diverse 
flora of Saudi Arabia. To accomplish this task, a novel dataset was created, named SaudiArabiaFlora Dataset, comprising 
samples from ten distinct types of plants found across various regions of Saudi Arabia. Our novel database provides an 
extensive range of plant species. The proposed model, named MIV-PlantNet, leverages the strengths of three well-established 
architectures: MobileNet, Inception, and VGG. By combining their unique characteristics, the model aims to achieve superior 
performance in terms of classification accuracy, precision, and F1-score. Extensive experiments were conducted to evaluate 
the model’s efficacy, and comparisons were made with state-of-the-art models such as MobileNet, Inception, and VGG. 
The results demonstrate that the MIV-PlantNet deep learning model achieved an outstanding accuracy of 99%. Moreover, it 
demonstrates remarkable precision at 96% and an outstanding F1-score of 98%, underscoring its robustness and reliability. 
To gain insights into the model decision-making process, we utilized visual explainable AI approaches, specifically SHAP 
(SHapley Additive exPlanations). This analysis reveals the essential elements contributing to model predictions, enhancing 
our understanding of the classification process and model behavior. The findings of this study have substantial implications, 
accurate plant classification in Saudi Arabia has significant implications for biodiversity preservation and ecological stud-
ies. Our Dataset and MIV-PlantNet model offers exceptional resources and valuable insights for automated plant detection 
in various fields.
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Introduction

Plants play an enormous role in our daily lives, providing 
us with essential materials and contributing to our well-
being in a variety of ways. Plants are the primary course 
of food, medicine as well as materials for housing and 
clothing. Plants also contribute to environmental sustain-
ability by lowering air pollution, mitigating climate change 
through carbon sequestration, and preserving ecological 
balance through the support of various habitats. Plants 
play a vital role for human survival. They do not only 
provide food, medicine, shelter but also provide fuel as 
well as play an important role in keeping the ecosystem 
running (Cumo 2015). The classification of different types 
of plants is extremely important in biology and beyond. 
Plant categorization helps us comprehend their relation-
ships, properties, and ecological responsibilities by group-
ing them into various categories based on shared criteria. 
Simpson (Simpson 2019) emphasizes that "classification 
provides a framework for organizing and understanding 
the diversity of plants and their relationships with other 
organisms." Scientists, botanists, and researchers can more 
successfully identify and analyze plant species through 
classification, allowing for breakthroughs in disciplines 
such as agriculture, medicine, ecology, and conservation. 
Furthermore, classification aids in plant identification, 
allowing farmers to make informed crop selection and 
cultivation decisions, as well as conservationists in iden-
tifying and safeguarding endangered plant species.

In recent years, advances in deep learning have signifi-
cantly improved image classification, providing promising 
ways to automate this task. Deep learning has been used in 
different domains to improve the accuracy such as Com-
puter Vision (Krizhevsky et al. 2012), Object Detection 
and Recognition (Pathak et al. 2018; Emna et al. 2020), 
Image Segmentation (Minaee  et al. 2021; Benoit et al. 
2021), Environment (Saint-fleur et al. 2023; Mosaffaei 
et al. 2020; Zamri et al. 2023), Healthcare (Alam et al. 
2022; Thanmai et al. 2023), e-commerce (Gulzar et al. 
2023), Autonomous Systems (Qurashi et al. 2023), Edu-
cation (Sghir et al. 2023; Ouyang et al. 2022), Natural 
Language Processing (NLP) (Lauriola et al. 2022). With 
its unique characteristics, deep learning has significantly 
contributed to the field of agriculture, particularly in plant 
classification and taxonomy. Traditionally, plant classifi-
cation relies on manual observation and expertise, which 
is considered as timing-consuming and subjective. The 
existence of numerous similarities among various species 
demands a significant level of knowledge and experience 
to ensure precise and accurate identification. Conventional 
identification methods are not only time-consuming but 
frustrating, and often require familiarity with technical 

terminology. This complexity hinders beginners from 
acquiring proficiency in differentiating plant species. All 
these factors make it difficult for a common person to 
become familiar with the different types of plants. There-
fore, there is a need to develop a computer vision-based 
automatic plant identification system that can facilitate 
and speed up the identification process. Having automated 
plant detection (APD) holds significant value for multiple 
reasons. Firstly, it aids in monitoring and preserving plant 
diversity within natural ecosystems. Secondly, APD facili-
tates the identification of unique plant varieties that pos-
sess desirable traits, contributing to enhanced agricultural 
productivity. Furthermore, APD serves as an effective tool 
for identifying and managing invasive plant species that 
can have detrimental effects on both the environment and 
agriculture. Consequently, APD enables environmental 
monitoring and control of plant communities, ensuring 
sustainable practices.

In addition to their practical applications, APDs offer 
significant potential for advancing ecological and botani-
cal research. By streamlining plant identification processes, 
scientists can efficiently gather extensive datasets pertaining 
to plant communities and their environmental interactions. 
The versatility of APDs extends to diverse areas such as bio-
diversity preservation, agricultural practices, environmental 
surveillance, and scientific investigations. It offers invaluable 
insights into plant variety and plays a pivotal role in pro-
moting environmental sustainability. Consequently, it proves 
indispensable for researchers, farmers, and advocates of eco-
logical well-being. There have been many attempts made by 
the researcher to develop a computer vision-based system 
for the classification of plants. For instance, Mohanty et al. 
(2016) proposed a deep learning model for detection of dis-
eases found in plants. This study was conducted for 14 dif-
ferent plants, which had 26 different types of diseases. Their 
proposed model has achieved 99.35% of accuracy. Yalcin 
and Razavi (2016) proposed a CNN model for classification 
of plants. The dataset they have used contained around 1200 
images of 16 different plants such as tangerine, sunflower, 
apricot, tomato, grapes and many more. Their model has 
achieved around 97.47% accuracy. Pound et al. (2017) devel-
oped a new dataset containing the images of wheat spikes 
and spikelets. They proposed a CNN model which achieved 
95.91% for spikes and 99.66% spikelets. Duong-Trung et al. 
(2019) proposed a deep learning model, leveraging the trans-
fer learning for herb classification. They trained their pro-
posed model based on a self-collected dataset and claim that 
it has achieved 98.7% accuracy. They have also compared 
their model with state-of-the-art (SOTA) models and their 
proposed model has outperformed the SOTA models.

Mamani Diaz et al. (2019) presented a deep learning 
model for plant classification. They have used a public data-
set “Plant Seedlings Dataset”, containing 980 images of 12 
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different plants. Their model has achieved 86.21% accuracy. 
They have further compared their model with InceptionV3, 
VGG16 and Xception and claim that their model has out-
performed these pretrained models. A deep learning model, 
based on VGG16 (Ariunzaya et al. 2023; Yang et al. 2021) 
was proposed for classification of seeds, containing 14 dif-
ferent classes. The proposed model achieved 99% accuracy 
in identifying different types of seeds. In 2021 a compar-
ative study was conducted by Sai Kumar et al. (2021) in 
which they trained the SOTA model on the Rural Medici-
nal Plant (RMP) dataset, containing 8 different classes. The 
results show that MobileNet has outperformed Dense121, 
InceptionV3, VGG16, Xception, and VGG19. Alsaedi et al. 
(2022) proposed a deep learning model for dessert plant 
classification. They created a dataset of having 5 different 
classes and each class contains around 332 images. Their 
results claim that their model was able to identify different 
types of plants with 99.8% accuracy. There are other studies 
which have been using deep learning for classifying different 
types of fruits (Alsaedi et al. 2022; Abu-Jamie et al. 2022). 
In Hossain et al. (2018) the author proposed a deep learn-
ing model for industrial fruit classification. Their models 
achieved up to 99.75% accuracy using different databases. 
Whereas in (Abu-Jamie 2026), a deep learning-based fruit 
classification framework was introduced, featuring two dis-
tinct architectures: a six-layer convolutional neural network 
and a finely-tuned pretrained Visual Geometry Group-16 
(VGG-16) model. Remarkably, the second model achieved 
outstanding accuracy rates of 99.75% on clear fruit images 
and 96.75% on challenging ones. Batchuluun et al. (2022) 
proposed a model for classifying plant and crop diseases 
using thermal images. They collected a new dataset con-
taining 4,720 various images of flowers and leaves. The 
proposed CNN based model has achieved 98.55% accuracy 
while identifying plant and crop diseases.

In this research work, a novel deep learning model, MIV-
PlantNet, is proposed for classification of varied flora of 
Saudi Arabia. This work contributes to discipline in sev-
eral important ways. Following are the contributions of this 
research article.

• Comprehensive novel dataset creation: This research 
work contributes to the field by collecting samples from 
10 different plant species that can be found throughout 
Saudi Arabia's varied areas. This novel dataset, available 
upon request, is specifically designed to address Saudi 
Arabia's distinctive flora, which was previously missing 
from other databases. Researchers may now develop and 
test deep learning models for precise plant classification 
in the area thanks to the creation of this dataset.

• Hybrid model leveraging established architectures: the 
study offers the MIV-PlantNet deep learning model, 
which combines the strengths of these three well-known 

architectures. The model seeks to obtain improved per-
formance in terms of classification accuracy by utilizing 
the distinct features of MobileNet, Inception, and VGG 
architectures. This contribution demonstrates the effec-
tiveness of combining established techniques to tackle 
complex classification tasks in specific domains.

• Significant classification performance: Extensive exper-
iments were conducted to evaluate the efficacy of the 
MIV-PlantNet model and compare it with state-of-the-
art models like MobileNet, Inception, and VGG. The 
results underscore the remarkable performance of the 
MIV-PlantNet model, boasting an impressive 99% accu-
racy and an F1-score of 0.98, all achieved within a swift 
inference time of just 0.4 s.

• Implications for environmental conservation and bot-
any research: The accurate classification of plant spe-
cies in Saudi Arabia has substantial implications for 
various domains, including environmental conservation 
and botany research. By facilitating the preservation of 
biodiversity and aiding in ecological studies, the pro-
posed deep learning model contributes to efforts aimed 
at understanding and protecting the unique plant life in 
Saudi Arabia. It provides researchers with a valuable 
tool to study and identify plant species in the region 
accurately. This contribution extends beyond academic 
research, empowering a broader community to contrib-
ute to plant identification, environmental monitoring, and 
other related activities in the region.

The paper is organized into four distinct sections, each 
contributing essential elements to the study. Firstly, the 
experimental data and evaluation metrics are presented, 
laying the foundation for the subsequent analysis, and pro-
posing a new Flora dataset. The second section introduces 
both the tested and proposed methods, while outlining the 
experimental setup utilized for evaluation. Moving forward, 
the third section scrutinizes the obtained results and assesses 
the performance of the models under examination. Lastly, 
the fourth section offers a comprehensive discussion cover-
ing the strengths, limitations, and noteworthy observations. 
In conclusion, key findings are summarized, and promising 
avenues for future research are suggested.

Experimental data and evaluation metrics

SaudiArabiaFlora dataset and preprocessing

Our novel dataset, called SaudiArabiaFlora, offers a valu-
able resource for plant recognition tasks, encompassing 
RGB images of 10 distinct plant families prevalent in Saudi 
Arabia. With a collection of over 1050 images, the dataset 
provides a substantial volume of samples for training and 
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evaluation purposes. The images were meticulously captured 
using a Nikon D5100 16.2MP DSLR camera paired with an 
18-55 mm VR lens, ensuring high-quality image acquisi-
tion. The resulting images have a resolution of 3679 × 5439 
pixels, facilitating a detailed analysis of plant features. Fig-
ure 1 shows the Pie chart depicting the distribution of images 
across the 10 main plant classes in the dataset. Each class 
is represented by a slice in the chart, reflecting the relative 
proportion of images. The intensity of color in each slice 
corresponds to the number of images, with darker shades 
indicating higher image counts. Figure 2 exhibits a selec-
tion of photographed images from the 10 plant species. The 
figure provides a glimpse into the variety and characteristics 
of the different plant classes encompassed by the dataset.

Our dataset for plant recognition originates from natu-
ral environments, presenting a multitude of obstacles and 
diverse characteristics. These challenges, visually repre-
sented in Fig. 3 encompass variations in background, size, 
season, angle of view, and lighting conditions. Background 
elements may include hands, roads, or the ground itself. 
Shots taken from different positions can lead to discrepancies 

in plant size. The images were captured across various sea-
sons, causing variations in leaf color, flower appearance, 
size, and other attributes. Varying angles of view expose 
distinct plant features, such as leaf patterns. Additionally, 
lighting conditions differ depending on the time of day when 
the images were taken, leading to subtle variations in plant 
colors due to sunlight. The images demonstrate the range of 
environmental contexts and magnification settings encoun-
tered within the dataset, capturing the inherent variability 

Fig. 1  Distribution of images 
per class among the SaudiAra-
biaFlora dataset

Fig. 2  Samples of each class of 
plant species in the SaudiAra-
biaFlora dataset

Fig. 3  Images of dataset with significant variations in background 
and zoom levels
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in background scenery and the degree of visual focus on the 
plant subjects.

To prepare a data set that can be used to train a deep 
learning model, we performed two preparation strategies. 
The first is to minimize data preparation methods, and the 
second is to apply more advanced preparation processes. For 
the first, we applied scaling and normalization as suggested 
for using images in deep learning applications. Therefore, we 
scaled the image to the input dimension of the network (512 
pixels). In addition, we normalized the red, green, and blue 
color channels separately to a mean value of 0 and standard. 
For heavy processing, we made several data enhancements 
to increase the richness of the dataset. We randomly divide 
the dataset into specified proportions. 80% of the data will 
be assigned to the training subset, while the remaining 20% 
will be assigned to the testing subset. The split is conducted 
while ensuring that the class distribution is preserved in both 
the training and testing subsets. Figure 4 shows the split of 
the main dataset into a training and test set.

Evaluation metrics

Conventional metrics

To quantify the performance of our proposed model, a set 
of metrics has been used such as accuracy, precision, recall, 
F1 score and the confusion matrix. The formula of each 
metric is detailed in the following. Regarding recall, it was 
calculated by the ratio between the number of true positive 
classes and the total number of positive classes. In order to 
get a complete comparison of the different facets of perfor-
mance, we use precision as a common measure. Besides, we 
use the F1 score, a harmonic mean combining precision and 
recall, to provide a better overview of performance. We have 

also evaluated our performances across each class using the 
confusion matrix.

Visual explanation metrics

Deep learning models evaluation often relies on perfor-
mance metrics, but interpreting their predictions, especially 
for complex deep neural networks, can pose challenges. 
Explainable Artificial Intelligence (XAI) has gained sig-
nificance in understanding algorithmic decision-making 
processes, given the growing acceptance and integration 
of artificial intelligence (Szegedy et al. 2016). XAI, intro-
duced by Sujatha et al. (2021), refers to a system’s ability to 
explain AI-based predictions. In this study, we focus on per-
turbation-based explanation methods, specifically SHapley 
Additive exPlanation (SHAP) (Sculley et al. 2018). SHAP 
quantifies feature importance for individual predictions by 
computing Shapley values using game theory concepts. Ker-
nelSHAP and DeepSHAP are some methods proposed for 
estimating SHAP values, outperforming other techniques 
such as LRP and LIME (Linardatos et al. 2021; Van et al. 
2004). SHAP also provides insights into feature importance 
and their impact on network decisions (Lundberg et al. 2017; 
Knapič et al. 2021; Amri et al. 2022).

Proposed methods

Adapted deep learning models

As highlighted in the literature, the impressive perfor-
mance of deep learning approaches outperforms conven-
tional object detection approaches. The availability of 
a collection of RGB images with a rich variability and 
various plants allows us to consider such deep models 

Fig. 4  Visualization of Data Distribution by Class in the Training and Validation Sets, with 20 samples reserved for the Test Set in each class
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in a supervised learning approach. When it comes to the 
classification of plants, selecting the appropriate deep 
learning models is crucial for achieving accurate and reli-
able results. In this regard, Three popular choices in this 
domain are VGG19 (Abu-Jamie et al. 2022), MobileNetV2 
(Batchuluun et al. 2022), and InceptionV3 (Simonyan and 
Zisserman 2014). These models have gained prominence 
due to their unique architectures and exceptional perfor-
mance in image classification tasks.

VGG19 (Abu-Jamie  et al. 2022): VGG19 is known 
for its deep structure, enabling it to capture intricate fea-
tures and patterns in plant images. This architecture com-
prises multiple convolutional layers with small receptive 
fields, followed by fully connected layers, as depicted in 
Fig. 5(a). We specifically selected the VGG-19 version, 
which includes 16 convolutional layers and three fully 
connected layers. Its additional layers enable the model 
to learn intricate image patterns effectively. Compared to 
other architectures like AlexNet or GoogLeNet, VGG-19 
offers a more compact size, resulting in faster computation 
without compromising accuracy and robustness in plant 
detection tasks where detailed feature representation is 
crucial (Sandler et al. 2018).

MobileNetV2 (Batchuluun et al. 2022): MobileNetV2 
is a convolutional neural network architecture designed for 
mobile and embedded devices, which aims to achieve high 
accuracy while maintaining low latency. It consists of light-
weight depth wise convolutions that reduce the number of 
parameters in the model without compromising its perfor-
mance. Furthermore, MobileNetV2 improves its efficiency 
by incorporating inverted residual connections and linear 
bottleneck layers, as shown in the architecture Fig. 5(b). This 
design approach effectively reduces the computational effort 
required by a standard convolution network while maintain-
ing high accuracy. In addition, MobileNetV2 uses linear bot-
tlenecks with shortcut connections between bottleneck layers 
to promote efficient information transfer within the network. 
This approach enables training deeper models while keeping 
computational costs under control. Overall, MobileNetV2 
offers an attractive combination of efficiency, speed, and 
accuracy, making it a good choice for crop detection appli-
cations, especially in resource-constrained environments and 
mobile devices.

Inception V3 (Simonyan and Zisserman 2014): This 
architecture is built upon the idea of using multiple filters 
of different sizes within a single layer. The architecture is 
depicted in Fig. 5(c). InceptionV3 utilizes a combination of 

(a) VGG-19 (b) MobileNetV2 (c) Inception V3 

Fig. 5  Overview of the VGG-19, MobileNetV2 and Inception V3 architecture



Modeling Earth Systems and Environment 

Stem blocks, Inception blocks, and an auxiliary classifica-
tion block. The Stem block extracts low-level features as a 
basic backbone. The Inception blocks capture multi-scale 
contextual information, leading to more robust representa-
tions. InceptionNet employs a combination of 1 × 1, 3 × 3, 
and 5 × 5 convolutional filters alongside max pooling opera-
tions to extract features at different levels of abstraction. 
Regarding the auxiliary classification block aids in training. 
This architecture enables InceptionV3 to achieve strong per-
formance in image classification tasks.

Proposed model: MIV‑PlantNet

In this research work, we have proposed a novel model called 
MIV-PlantNet, that leverages the collaborative strength of 
ensemble modeling with late fusion. MIV-PlantNet involves 
loading multiple models, each with its own unique character-
istics, and integrating them into a cohesive ensemble.

Drawing inspiration from the concept of ensemble mod-
eling, which has proven effective in various domains, our 
proposed model embraces the collective intelligence of 
the state-of-art models to achieve enhanced performance. 
Through a fusion process, we aggregate the predictions of 
these (VGG19, MobileNetv2, InceptionV3) individual mod-
els to create a unified and more robust output that incorpo-
rates the collective knowledge of the ensemble. Several tests 
have been performed to find the best combination of the 
model, Table 1 shows the combination tested, including the 
proposed models MIV-PlantNet, which stands for Mobile 
Inception VGG PlantNet which combines the three mod-
els. Using the late fusion technique enables us to effectively 
combine the predictions of individual models at a later stage, 
resulting in a more comprehensive and reliable output.

Figure  6 illustrates the architecture of our proposed 
model, incorporating three deep learning models for plant 
detection.

To improve the performance of plant detection, a novel 
approach, MIV-PlantNet, was employed by combining the 
predictions of the three compared deep learning models: 
MobileNetV2, InceptionV3, and VGG16. By leveraging 
the strengths of each individual model, this combination 
technique aimed to enhance the accuracy and robustness of 
the overall plant detection system. The choice of employ-
ing ensemble learning for the plant detection classifier was 
motivated by several advantages it offers. Firstly, ensemble 

learning enhances the accuracy of the classifier by com-
bining predictions from multiple models, minimizing the 
likelihood of errors and misclassifications. Secondly, it 
improves the classifier robustness by leveraging the diver-
sity of individual models, enabling it to effectively handle 
variations in plant appearance caused by factors such as 
backgrounds, lighting conditions, seasons, and viewpoints. 
Ensemble learning also mitigates overfitting by leveraging 
the collective wisdom of different models, thereby enhanc-
ing generalization performance on unseen data. Further-
more, it addresses the challenge of class imbalance by pro-
viding a balanced perspective and improving classification 
results across all plant classes. By leveraging models such 
as MobileNetV2, InceptionV3, and VGG16, each with their 
unique strengths, the ensemble approach aims to create a 
more powerful and comprehensive plant detection classifier.

Experimental settings

This research aims to propose an optimal model which 
identifies and classifies different types of plants. The pro-
posed model was implemented using Python 3.10 on the 
Linux operating system, using an i7 processor and 15 GB 
RAM and an NVIDIA GeForce GTX 1060 Mobile 6 GB 
GPU. We also provided a detailed description of the exper-
imental setup employed in our study, ensuring transpar-
ency and reproducibility of our results. We discussed the 
dataset used for training evaluation, the selection of deep 
learning models, and the evaluation metrics employed. 

Table 1  List of model 
combinations tested

Combined models

MobileNetV2 + Inception V3
VGG19 + InceptionV3
VGG19 + MobileNetV2
MIV-PlantNet

Fig. 6  Proposed model for plant detection
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This comprehensive overview enables researchers to vali-
date and build upon our work effectively. We followed the 
above systematic workflow consisting of several essential 
steps:

Data pre-processing: In this stage, we resized and nor-
malized the pixels of the images to ensure consistency 
and facilitate further analysis. Besides, we explored data 
augmentation techniques, however, after careful evalu-
ation, we found that implementing these techniques did 
not significantly improve the performance of our model. 
Therefore, we made the decision to exclude these tech-
niques from our experimentation phase. Despite not 
utilizing data augmentation, our model demonstrated 
satisfactory and stable performance, indicating that it 
could effectively detect plants without relying on these 
additional methods.
Model training: In the model training stage, each clas-
sifier undergoes pre-training on the ImageNet dataset 
before being trained on our specific training set for plant 
detection. This approach, known as transfer learning, 
reduces the need for large amounts of data and acceler-
ates training time. By leveraging the pre-learned features, 
the model initializes with a solid foundation and adapts its 
representations to the unique requirements of plant detec-
tion. Hyperparameters like learning rate, batch size, and 
regularization techniques (dropout, early stopping) are 
meticulously tuned to ensure fair comparisons between 
classifiers. The widely used Adam optimizer is employed 
as the optimization algorithm, with a learning rate of 1e-3 
controlling the weight update step size. For the loss func-
tion, categorical cross entropy is chosen due to its suit-
ability for multi-class classification tasks.
Performance assessments: To ensure reliable and robust 
performance estimation, our model underwent K-Fold 
cross-validation during the training phase. This tech-
nique enhances the trustworthiness and generalizability 
of the models by dividing the dataset into K subsets. 
Through iterative training and evaluation on different 
subsets, we obtained a comprehensive understanding 
of the models' performance. This approach effectively 
addressed concerns of overfitting and provided valuable 
insights into the consistency and stability of the models 
in plant detection across diverse subsets. The integration 
of K-Fold cross-validation in our study ensured a rigorous 
evaluation process, boosting confidence in models’ ability 
to generalize to unseen plant images. Moving forward, 
the evaluation of model performance during the testing 
stage will involve considering multiple metrics. These 
include confusion matrix, accuracy, precision, recall, 
and F1-score. To conduct a more thorough performance 
evaluation and gain a deeper understanding of how our 
deep learning model makes decisions, we have incorpo-

rated the use of visual explainable artificial intelligence, 
specifically employing SHAP explanation.
Comparative analysis: We establish a comparative study 
of the classifiers' performance on a test set separate from 
the training and validation sets in the comparative study. 
We aim to evaluate the performance and computational 
effectiveness of the classifiers. We hope to gain insight 
into how the classifiers work in real-life circumstances.

Results

Comparative study

The performance of three deep learning models, namely 
MobileNetV2, InceptionV3, VGG16, was evaluated for 
the task of plant detection using a dataset comprising 10 
plant classes. The training loss and accuracy for the three 
models were analyzed and plotted together in Fig. 7. The 
figure offers a comprehensive visualization of the training 
dynamics and comparative analysis of the models learning 
behavior. One important aspect of this study is the consistent 
training setup employed for all three models: MobileNetV2, 
InceptionV3, and VGG16. These models were trained using 
the same dataset and evaluated on an identical test set. Each 
model was trained using the same configuration and utilized 
pretraining weights from the ImageNet dataset, offering the 
advantage of leveraging learned feature representations, 
minimizing the need for extensive labeled plant data dur-
ing training. By adopting this consistent methodology, a fair 
and unbiased comparison of the models’ performances were 
ensured. Consequently, this approach allowed for a reliable 
assessment of the model capabilities in plant detection, as 
any observed differences could be attributed to their inher-
ent qualities rather than variations in training procedures. 
Figure 7 illustrates the remarkable trend in both training and 
validation accuracy, reaching nearly 100% by the conclu-
sion of the training process. Simultaneously, the training and 
validation loss consistently decrease, approaching zero as 
the training progresses. The plotted figures provide valuable 
insights into the training progress and performance of the 
models. The training loss curve illustrates the convergence 
of models' learning process, demonstrating the gradual 
reduction in error as training progresses (near 0 around 12 
iterations). On the other hand, the accuracy curve shows how 
well the models were able to correctly classify plant images 
during training. It starts clearly from the fourth iteration and 
reaches its highest value around the twelfth iteration. By 
examining the training loss and accuracy curves for all three 
models together, it is clearly illustrated that their patterns 
are quite similar (Fig. 7). It is particularly relevant to con-
sider the relationship between these metrics and the specific 
nature of the plant detection task.
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As the models are trained on data specifically related to 
plants, a decreasing training loss indicates that the models 
are effectively learning (the loss curves tending towards 0 
around the last epochs) and adapting to the unique char-
acteristics of plant images. Moreover, an upward trend in 
accuracy signifies improved model performance and their 
ability to accurately differentiate between different plant 
classes (the accuracy curves tending towards 1 around the 
last epochs). The challenge of our dataset with its speci-
ficity, namely variations in backgrounds, seasonal changes, 
and diverse viewpoints, can have an impact on the model's 
learning process. Therefore, the training loss and accuracy 
curves serve as important indicators of the models’ capabil-
ity to handle such data specificity and refine their predictions 
accordingly. The classification accuracy, precision, recall, 
and F1 score were computed for each model as presented 
in Table 2. The test set consisted of around 20 samples for 
each class. One can note that the best obtained performance 
is achieved by the MIV-PlantNet model.

Figure 8 illustrates the confusion matrix obtained dur-
ing testing of MobileNetV2, InceptionV3, VGG19 and 
MIV-PlantNet. The test set contained the 20 samples 

of each class. From the figure it can be inferred that the 
proposed model, MIV-PlantNet has achieved the highest 
accuracy by predicting all the classes correctly, except 
Aizoaceae, Caryophyllaceae, and Mavaceae, which got 
one instance wrong. Whereas VGG16 was the second-best 
model in predicting the correct instances during testing. 
InceptionV3 and MobileNetV2 were having the highest 

Fig. 7  Training accuracy and loss of VGG19, MobileNetV2 and InceptionV3

Table 2  Accuracy, precision, recall and F1-score of different models 
on a test set of 210 images

Bold values indicate the significance of the proposed model: MIV-
PlantNet

Model name Precision Recall F1-score Accuracy

MobileNetV2 0.85 0.85 0.85 0.85
InceptionV3 0.86 0.87 0.85 0.85
VGG19 0.87 0.86 0.86 0.87
MobileNetV2 + Incep-

tionV3
0.96 0.96 0.96 0.96

VGG19 + MobileNetV2 0.94 0.94 0.94 0.95
VGG19 + InceptionV3 0.94 0.93 0.94 0.94
MIV-PlantNet 0.98 0.98 0.98 0.99
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a) MobileNetV2 b) InceptionV3

c) VGG19 d) MIV-PlantNet

Fig. 8  Confusion matrix of all three models MobileNetV2, InceptionV3, VGG19 and MIV-PlantNet
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number of wrong predictions during the plant classifica-
tion. Furthermore, Fig. 9 showcases the Precision, recall, 
F1-score, and accuracy of the compared models. It is evi-
dent from the results that the proposed model outperforms 
all the other models.

Going further, we present an analysis of the best out-
comes achieved by MIV-PlantNet, with more detailed 
metrics illustrated in Fig.  10. The evaluation metrics 
are displayed through a Class-wise Evaluation, provid-
ing insights into each class's performance in the test set, 
including the number of samples (support column), pre-
cision, recall, and F1-score. For instance, taking the class 
as an example, we observe that classes like "Chenopodi-
aceae", "Boraginaceae","Malvaceae", "Maraceae," and 
"Polygonaceae" show precision, recall, and F1-scores of 
1. Additionally, an overall perspective of the prediction 
across all classes is provided through the macro-average 

and weighted average accuracy, achieving an impressive 
accuracy of 0.99.

Correct prediction analysis

To demonstrate the performance of the plant detection 
models, namely MobileNetV2, InceptionV3, VGG19, and 
MIV-PlantNet a series of sample predictions were gathered 
from the test set. The results are visually depicted in Fig. 11. 
These illustrations offer a glimpse into the models’ profi-
ciency in accurately classifying various plant images, thus 
highlighting their efficacy in plant detection tasks.

One can notes that the prediction from the MobileNetV2 
model (Fig. 11a) involved the successful identification of an 
image belonging to the Leguminosae class, demonstrating 
the model effectiveness in detecting specific plant families. 
Similarly, the InceptionV3 model (Fig. 11b) exhibited pre-
cise classification by accurately assigning an image to the 
Chenopodiaceae class, indicating its ability to differentiate 
between different plant categories. Likewise, the VGG16 
model (Fig. 11c) made an accurate prediction by correctly 
categorizing an image as part of the Compositea class, 
showcasing its competence in recognizing complex plant 
structures. Furthermore, the models demonstrated robust 
performance in classifying images that presented challenges 
such as variations in backgrounds, seasonal changes, and 
diverse viewpoints. For instance, the MobileNetV2 model 
successfully classified an image captured in a dense forest 
environment, highlighting its resilience in handling different 
background conditions. In another scenario, the InceptionV3 
model effectively identified an image taken during winter, 
showcasing its adaptability to seasonal variations. Simi-
larly, the VGG16 model demonstrated its capability to han-
dle varying viewpoints by accurately recognizing an image 
captured from a low-angle perspective. These sample predic-
tions collectively exemplify the models’ ability to accurately 

Fig. 9  Classification report for 
the tested models Vs MIV-
PlantNet

Fig. 10  MIV-PlantNet Model metrics report, class-wise evaluation
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Fig. 11  Plant detection results 
across various models

a) MobileNetV2

b) InceptionV3

c) VGG 19

d) MIV-PlantNet
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classify plants across various classes and challenging condi-
tions. They provide concrete evidence of the models’ robust-
ness, adaptability, and sensitivity to the specific character-
istics exhibited by plant images. Figure 11d showcases the 
combined performance of the three aforementioned models, 
highlighting the superior performance achieved.

Wrong prediction analysis

The wrong prediction of different models is visually depicted 
in Fig. 12 for the different models. The disparity between 
the true class and the model predicted class emphasizes 
the occurrence of misclassifications in the plant detection 
process.

Plant species within the same family or even across dif-
ferent families can share certain visual traits, such as leaf 
shape, flower color, or growth pattern. This makes it chal-
lenging for a deep learning classifier to accurately distin-
guish between closely related species or those with similar 
visual features. In addition to the inherent visual similarities 
between plant species, another factor that can contribute to 
wrong detection is the variation in the image composition 
and contextual information. The test set includes images 
that are zoomed in on specific parts of the plant without 
providing much contextual information, while others are 
zoomed out, encompassing a wider view that includes other 
surrounding elements or phenomena as shown in Fig. 12. 
When images are zoomed in on specific plant parts, the task 
of distinguishing between similar-looking species becomes 
more challenging. Without the broader contextual informa-
tion, the classifier relies on limited visual cues within the 
zoomed-in region, which can result in misclassifications, 
particularly when species share similar characteristics in 
that area. On the contrary, when images are zoomed out to 
include a larger portion of the plant and its surroundings, 
the classification task becomes more complex. The presence 
of diverse visual features, such as different plant structures, 
background objects, or environmental factors, adds intricacy 
to the classification process. This complexity makes it harder 
for the classifier to focus solely on the distinguishing char-
acteristics of the target species, increasing the likelihood of 
classification errors. In its entirety, studies show that deep 
learning models are advantageous for plant detecting tasks. 
VGG16 stands out for its overall accuracy, although Incep-
tionV3 and MobileNetV2 deliver competitive results with 
distinct strengths in specific classes.

Visual explanation of models classifications

To shed light on the decision-making process of our pro-
posed model MIV-PlantNet, we employ SHAP explanations. 
This visual explanation technique allows us to delve into the 
factors that influence the model predictions. Identifying the 

key areas that have a significant impact on the model deci-
sion yields valuable insights into the model's inner work-
ings. An interpretation of the plant prediction realized by the 
MIV-PlantNet model can be observed in Fig. 13. The model 
demonstrates a particular strong SHAP values on various 
distinguishing areas in the images such as leaf patterns, the 
fruits, and flowers to make its decision about the plant spe-
cies. The SHAP explanation helps interpret the underlying 
features that contribute to the model decision, enhancing our 
understanding of how the model perceives and distinguishes 
different plant attributes. The analysis, depicted in Fig. 14, 
offers a sample of visual explanations to deepen our under-
standing of the factors influencing the model's incorrect pre-
dictions (as shown in Fig. 12d). It revealed that the model 
assigned considerable importance to the background of the 
images, as indicated by the regions with positive SHAP val-
ues highlighted in red. One can note the sand region and 
rock elements in the images shown in Fig. 14. Interestingly, 
these regions were predominantly found along the borders 
of the images, where the background is present. This find-
ing suggests that the model's incorrect predictions may be 
influenced by the presence of the background, which it mis-
takenly associated with certain plant species. The model's 
attention to the background highlights the potential chal-
lenges in distinguishing between the foreground (plant) and 
background elements, especially when the images contain 
zoomed-in or cropped views. Additionally, it focused on the 
flowers and leaves of the detected plants, potentially causing 
confusion when distinguishing between different species. 
The SHAP explanation revealed that the model attributed 
significant importance to the background, as seeing the posi-
tive SHAP values highlighted in red are found mostly in 
the areas of the borders of the images where there is the 
background. By leveraging the SHAP explanation, we can 
identify areas for potential enhancement, ultimately improv-
ing the reliability of the plant detection model. 

Discussion

The proposed model MIV-PlantNet demonstrated excel-
lent precision across most classes, with a precision score of 
1.0, indicating minimal misclassifications. Notably, in the 
confusion matrix presented in Fig. 10 for the Compositea, 
Leguminosae, and Molluginaceae classes, the precision 
score hovered around 0.95, showcasing our proposed model 
capability to accurately classify plants across a wide range 
of classes, with only a slight variation for specific classes. 
The outstanding performance of the MIV-PlantNet model 
highlights the strength of combining multiple deep learn-
ing models. By aggregating the predictions from Mobile-
NetV2, InceptionV3, and VGG16, the MIV-PlantNet model 
effectively mitigated the limitations of individual models 
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Fig. 12  Wrong predictions 
made by different models

a) MobileNetV2

b) InceptionV3

c) VGG 19

d) MIV-PlantNet
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and capitalized on their collective strengths, resulting in 
significantly improved accuracy and precision. The MIV-
PlantNet model's ability to handle the challenges posed by 
the dataset, including variations in backgrounds, seasons, 
viewpoints, and zoom levels, further emphasizes its robust-
ness and adaptability. Such versatility makes the model suit-
able for real-world applications where environmental fac-
tors can introduce significant variations in plant appearance. 
Another interesting aspect to consider is the comparison of 
inference times for all the tested models vs our proposed 
model. Table 3 presents the inference times of different mod-
els used in plant detection. Notably, Inception V3, VGG-
19, and MobileNet V2 achieved inference times of 0.4295, 
0.4157, and 0.4180 s, respectively. Interestingly, ensemble 

models, such as MobileNet + Inception, MobileNet + VGG, 
and MIV-PlantNet demonstrated similar inference times to 
their individual counterparts while yielding better results. 
This implies that the ensemble models offer improved accu-
racy without significantly increasing the inference time. 
Therefore, these ensemble models are valuable for real-time 
plant detection applications. The findings of our study reveal 
an interesting discovery regarding the application of data 
augmentation techniques in the field of plant detection using 
deep learning. Through extensive experimentation and anal-
ysis, we have observed that employing sophisticated data 
augmentation methods does not yield significant improve-
ments in the performance of plant detection models.

This discovery challenges the prevailing belief that data 
augmentation universally enhances the accuracy and robust-
ness of deep learning models across various computer vision 
tasks. The intricate structures, diverse species, and complex 
backgrounds of plant images pose challenges in generat-
ing meaningful variations through augmentation without 
compromising crucial features. Additionally, the natural 
variations in lighting conditions and occlusions commonly 
encountered in plant images further restrict the efficacy of 
augmentation techniques. Consequently, we conclude that, 
in the specific domain of plant detection, advanced data 
augmentation methods may not be imperative for achieving 
satisfactory performance.

Conclusion

In summary, in our research endeavor, we set out on a thor-
ough exploration of plant detection, placing a particular 
spotlight on the intriguing and seldom-seen plant species 
flourishing in the landscapes of Saudi Arabia. What truly 
sets our study apart is the introduction of an innovative data-
set meticulously tailored to zero in on these less-frequented 
plant categories, effectively bridging a substantial gap in the 
realm of plant classification research. This dataset encom-
passes diverse backgrounds, seasonal variations, and mul-
tiple viewpoints, mirroring the real-world challenges faced 
in the field of plant detection. This dataset has been used 

Fig. 13  SHAP explains MIV-PlantNet model's correct predictions 
using colored regions. Deep red or blue = high feature importance; 
lighter colors = lower importance

Fig. 14  SHAP explains MIV-PlantNet model's wrong predictions 
using colored regions, same legend as Fig. 13

Table 3  Inference time comparison for individual models and our 
proposed model

Model Inference time (s)

InceptionV3 0.4295
VGG-19 0.4157
MobileNet V2 0.4180
MobileNet + Inception 0.4519
MobileNet + VGG 0.4428
MIV-PlantNet 0.4621
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to study the potential of deep learning models, conduct-
ing a comprehensive analysis of plant detection using three 
distinct deep learning models: MobileNetV2, InceptionV3, 
and VGG16. Furthermore, a proposed model MIV-PlantNet 
based on ensemble technique was proposed, combining the 
predictions of all three models. The ensemble approach 
yielded exceptional outcomes, achieving an impressive 
accuracy of 99% and consistently high precision across 
most classes. The results obtained from extensive experi-
mentation and evaluation demonstrate the effectiveness of 
these models in accurately classifying plant images across a 
diverse range of ten plant classes. Evaluation metrics such 
as accuracy, precision, recall, and F1 score were utilized to 
provide a thorough assessment of the model’s performance. 
The evaluation process was conducted on a comprehensive 
test set consisting of 210 samples, with 20 samples per class, 
thereby simulating real-world scenarios and accounting for 
the challenges encountered in plant detection tasks. The 
dataset encompassed diverse backgrounds, seasonal varia-
tions, and various viewpoints, ensuring a rigorous assess-
ment of the models’ capabilities. The individual models 
showcased promising results, with VGG16 achieving the 
highest accuracy of 86%, closely followed by MobileNetV2 
and InceptionV3, both attaining an accuracy of 85%. The 
highest performance is achieved by the proposed MIV-
PlantNet model. Our findings underscore the significance 
of combining the strengths of proposed modeling and late 
fusion techniques in enhancing the accuracy and robustness 
of plant detection classifiers. By leveraging the diverse pre-
dictions of multiple models, the ensemble approach achieved 
superior overall performance. These research findings con-
tribute valuable insights to the field of plant detection and 
pave the way for future advancements in leveraging ensem-
ble techniques to augment the accuracy and reliability of 
plant classification systems. Considering the study findings 
and achievement, several perspectives can be considered for 
further advancements in the field of plant detection. Firstly, 
expanding the dataset to include the subclasses. Including 
the subclasses and samples would allow for a more thorough 
assessment of the classifier performance across a broader 
range of plant types and variations. Additionally, explor-
ing more sophisticated ensemble techniques could lead to 
even greater improvements in classification performance. 
Another key perspective of this work is to address the chal-
lenges associated with wrong classifications in deep learning 
models for plant species. This can be achieved by carefully 
considering image composition during training and evalu-
ation, including a balanced mix of zoomed-in and zoomed-
out images.

In conclusion, the outcomes of this study highlight the 
potential of deep learning models, both individually and 
in combination, to achieve high accuracy in plant detec-
tion tasks. These findings have substantial implications 

for researchers, practitioners, and stakeholders in various 
domains such as agriculture, ecology, and biodiversity moni-
toring, where precise plant detection is pivotal for effective 
species understanding and management.
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