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Abstract—Brain tumors represent abnormal growths of brain
tissues, contributing significantly to mortality among affected
patients globally. The use of various deep learning (DL) networks
to improve this diagnostic procedure has been prompted by
the development of magnetic resonance imaging (MRI) as a
significant tool for the detection of tumors in the brain. However,
a persistent challenge in this field arises from the limited avail-
ability of appropriately annotated data. This work introduces a
semi-supervised DL methodology for brain tumor identification.
The proposed approach involves the utilization of a Wasserstein
Generative Adversarial Network with Gradient Penalty (WGAN-
GP) trained with a mixture of labeled and unlabeled data. As
a result, the discriminator of the WGAN-GP efficiently learns
robust features and data distribution patterns from instances of
data with and without labeling. The trained discriminator is then
adapted to perform the classification task. Leveraging pre-trained
WGAN-GP weights, the classifier model exhibits a significant
improvement in accuracy when compared to the model without
pre-training. With the integration of a pre-trained WGAN-GP
model, the proposed network architecture achieves an average
classification accuracy of 97.00%. To confirm the effectiveness of
this approach, comparative analyses with existing methods are
conducted, demonstrating its superior performance over the best
results achieved by current techniques.

Index Terms—WGAN-GP, Brain MRI, Classification, Deep
learning

I. INTRODUCTION

Brain cancer frequently develops as a result of the fast
growth of cells within the brain, which is known as a brain
tumor. The classification of brain tumors poses challenges due
to variations in size, shape, and location within the brain, with
examples including glioma, meningioma, and pituitary tumors.
Over five years, individuals under the age of 15 exhibited a
recovery rate of approximately 75%, while those aged 15 to
39 showed a rate of approximately 72% for diagnosed brain
tumors. In the year 2020, a total of 308,102 individuals were
identified as having primary central nervous system (CNS) tu-
mors [1]. Convolutional neural networks (CNNs) have shown
significant success in various medical imaging tasks, including
brain tumor classification from MRI data. These models can
directly learn complex features from the images, leading to
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improved diagnostic accuracy and efficiency. However, the
development of robust brain tumor classification models faces
challenges due to the scarcity of large-scale, well-annotated
datasets [2]. Adequate and accurately labeled data is crucial
for effective training of DL models. Insufficient data may
result in overfitting and hinder the classifiers’ generalization
performance. Advancements in classification techniques can
aid in identifying brain tumors and subsequently facilitating di-
agnosis. Recent progress in the image processing area includes
the application of Generative Adversarial Networks (GANs),
which are DL algorithms. GANs consist of a generator and
discriminator, enabling training on diverse datasets, generating
high-quality and realistic images, and distinguishing real from
fake data. This process not only increases the size of the
current dataset but also gives the GAN’s discriminator a unique
ability—it learns robust features and comprehends patterns of
data distribution from data samples. GANs encounter chal-
lenges related to mode collapse, instability during training,
and problems associated with the vanishing and exploding
gradients phenomenon. The WGAN-GP, an improved version
of GANSs, addresses their limitations by optimizing the loss
function. WGAN-GPs are employed in image processing tasks
due to their enhanced training stability, meaningful gradients,
mode coverage, and improved sample quality. Integrating
WGAN-GPs presents an efficient enhancement approach for
brain tumor classification. Semi-supervised learning has grown
in importance in recent years as a method for classification
tasks. Its crucial function in classifying brain tumors resides
in its capacity to maximize the use of weakly labeled data,
cut costs associated with annotation, and enhance model
generalization. This development offers hope for the creation
of more precise and affordable diagnostic instruments for the
medical field. These are the key points that this paper focuses
on:

1) In this study, a semi-supervised deep learning (DL)
methodology is introduced for the identification of brain
tumors. We have developed a novel WGAN-GPs model



aimed at mitigating the challenges associated with lim-
ited data availability.

2) The WGAN-GPs discriminator, which has been adapted
into a pre-trained deep neural network, is fine-tuned with
a limited number of labeled MRI scans to improve its
performance in tumor-type classification.

The organization of this paper follows the following for-
mat: Section II illustrates the recent work in brain tumor
classification. Section III contains the material and methods.
Section IV explains the experiment and presents the results.
Lastly, Section V concludes the paper.

II. RELATED WORK

In the following section, a review of several recent studies
about the classification of brain tumors is presented.
An approach for finding and categorizing brain tumors
that combines InceptionResNetV2 and Random Forest Tree
(RFT) within an ensemble architecture was proposed by
Gupta et al. [3]. In this approach, the RFT technique is
used to accurately categorize various types of brain tumors,
while InceptionResNetV2 is a pre-trained model designed
specifically for identifying tumors inside MRI data. The
integration also uses cyclic generative adversarial networks
to aid in the production of synthetic data. In order to detect
tumors and classify them, the author attained accuracy rates
of 99% and 98%, correspondingly
Tahir et al. [4] looked into various preprocessing methods

to enhance classification outcomes. On numerous test
sets, they examined the effectiveness of the three
techniques—noise reduction, contrast enhancement, and

edge detection—individually and in various combinations.
They emphasized the benefit of combining different strategies
rather than depending on just one. They utilized these
techniques and tested the SVM classifier on the Figshare
dataset, achieving an 86% accuracy rate.

Ghassemi et al. [5] utilized a combination of GANs and
fully connected (FC) layer deployment in a DL network
to accurately classify brain tumors from MRI images. The
system had got higher performance than another conventional
learning system at 93.01% with an induced split which had
turned into 95.6% with a random split.

In another paper, Guzman et al. [6] used the same dataset
combined with Fighshare, SARTAJ, and Br35H datasets and
InceptionV3 had the best accuracy of around 97.12%. A
hybrid network named AlexNet-KNN had been implemented
by AlTahhan et al. [7] to classify brain tumors and showed
around 97% accuracy with selected image datasets.

III. MATERIAL AND METHODS
A. Dataset description

This work utilizes two different datasets. The first dataset
is used for generative training and classification models. It
combines MRI scans from sources including Br35H, SARTAJ
dataset, and figshare. This dataset contains brain scans from

individuals with different types of tumors (gliomas, menin-
giomas, pituitary tumors) as well as healthy subjects, forming
four classes. There are 7021 MRI scans in total, with varying
quantities for each category. Each scan is available on Kaggle,
in JPEG format, with a resolution of 512 by 512 pixels, and
labeled with the specific tumor type [8]. The second dataset
called the OASIS dataset [9], involves 150 individuals aged 60
to 96, with a total of 373 imaging sessions. Each participant
had multiple MRI scans taken over at least a year, with each
session containing three to four T1-weighted MRI scans. The
dataset is used specifically for generative training purposes.
Selected samples from both datasets are illustrated in Fig. 1.

(b)

Fig. 1. (a) Sample images from OASIS [9] dataset (b) Sample images from
Kaggle [8] dataset.

B. Data preprocessing

In traditional methods, preprocessing techniques such as
segmentation are often required. However, a study [10] showed
that when deep neural networks are applied to MRI pictures,
the best results came from doing very little preparation,
especially only normalization. To make the analysis easier,
the images in this study have been normalized between -
1 and 1. For both the WGAN-GP and classifier model the
images were resized the images in 128x128. The images
in the second data set are volumetric brain scans with a
dimensions of 256 %256 * 128, resulting in varying dimen-
sions along different axes. Images were square-shaped in the
axial perspective before being immediately downsampled to
128 x 128 dimensions.The other two axes were picked from a
specified area of the image, with the second direction having a
random size between 128 and 180 pixels and the first direction
having 128 pixels. This selected region was then rescaled to
achieve a final size of 128 % 128 pixels. Apart from this, no



data augmentation has been employed in this research paper.
In this study, a set of 5709 images from the Kaggle dataset was
used for training the classifier model, and a separate subset of
1311 images was isolated for evaluation.

C. Tumor Classification using modified WGAN-GP

The generator G and the discriminator D are the two neural
networks that make up the DL architecture known as GAN
[11]. The main objective of the discriminator is to determine
the origin of a given data point, whether it belongs to a specific
database or not. On the other hand, the generator’s primary
purpose is to produce data points that closely resemble those
present in the database, to outsmart the discriminator.

These two neural networks engage in a two-player minimax
game: G endeavors to deceive D, leading to an increase in
G’s score while diminishing D’s score. Conversely, D strives
to accurately differentiate between real and fake data points,
which results in an increase in its score but a decrease in G’s
score.

m(%nm[e)le(D, G) = Exp,[log(D(x))]+
Ep,[log(1 —D(G(2)))]

The GAN is trained via iterative optimization of the function
f(D,G), as denoted in Equation 1. This includes taking into
account both the generator G and the discriminator D, where
P, denotes the distribution of actual data, and P, denotes the
distribution of the generator’s random vector. While GANs
have shown impressive performance, their training stability
and convergence have posed challenges. These issues are
addressed by the WGAN-GP approach, a variation of the
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Fig. 2. First two different types of MRI datasets are merged regardless of
classification labels and trained into the WGAN-GP model (step 1). The
discriminator is adjusted and utilized as a pre-trained model for classifying
brain tumors after WGAN-GP training (step 2).

regular GAN [12]. In order to more accurately compare the
distributions of actual and produced data, WGAN-GP uses the
Wasserstein distance, commonly known as the Earth Mover’s
Distance (EMD). It gives the discriminator a Lipschitz con-
tinuity constraint, improving training stability and preventing
issues like mode collapse. The WGAN-GP approach incorpo-
rates the Wasserstein distance and gradient penalty, making
the training more efficient and generating higher-quality data.
This is achieved through the Kantorovich-Rubinstein duality,
as expressed in the following equation:

mgn max Exwp, [D(x)] = Ezwp, [D(X)] (2)

Where d represents a 1-Lipschitz function set, P, represents
the model distribution implicitly defined by P,, the data distri-
bution. An automated brain tumor classification and detection
technique was employed using the WGAN-GP algorithm in
this research work. Initially, the MRI datasets underwent
uniform data pre-processing steps. Subsequently, the processed
MRI images were amalgamated and employed for training
the WGAN-GP model. The overall workflow of this paper
is illustrated in Fig. 2.
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Fig. 3. (a) Building structure of DeConv layer (b) Building structure of
ResBlock layer.

A 100-dimensional vector-size random noise was utilized
as input for the generator. The generator is composed of six
consecutive DeConv blocks. Transpose-convolution, instance
normalization, and ReLU activation layers are the sequences
in which the first five DeConv blocks are implemented. The
final DeConv layer only comprises a transpose-convolution
layer. Instance normalization is used as an alternative to
batch normalization due to the latter’s tendency to introduce
correlations among images within the same batch [13]. The
structure of the DeConv layer is illustrated in Fig. 3(a).

A filter with a 4 x4 kernel size, a stride of 2, and zero
padding is used for DeConvl. This initial deconvolutional
layer is of paramount importance in the up-sampling process,
as it governs the reconstruction of higher-resolution feature
maps from the encoded representations.Then, a consistent 4 x4
sized kernel, a stride of 2, and a padding of 1 are used for
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Fig. 4. Overall proposed model architecture.

DeConv2 to DeConv6. These consistent configurations ensure
a controlled and efficient up-sampling process throughout the
network.

The discriminator receives a 128 128 image as its output after
being processed by the generator.

In this research paper, a novel discriminator model is intro-
duced to enhance feature extraction capabilities. The proposed
discriminator architecture is made up of four ResBlock layers
that are placed one after another, then an FC layer and
a sigmoid or softmax layer. Each ResBlock layer consists
of CNN, instance normalization, and LeakyRelU activation
layers. The structure of the ResBlock layer is illustrated in Fig.
3(b). We incorporate skip connections within the ResBlock
layer. The rationale behind employing skip connections stems
from their ability to facilitate the seamless flow of information
and gradients throughout the network. By enabling direct path-
ways, skip connections aid in preserving crucial information
and gradients that may otherwise encounter loss or dilution
when traversing multiple layers [14].

Each ResBlock is characterized by two sequential CNN lay-
ers, each featuring distinct kernel sizes, strides, and padding
configurations. The first layer has a kernel size of 3%3, a
stride of 2, and a padding of 1, whereas the second layer has
a kernel size of 1, a stride of 1, and no padding. Notably, a
bypass convolutional layer with a kernel size of 1, a stride
of 2, and zero padding, is included into the ResBlock to
enable the construction of skip connections. With this strategy,
the discriminator will be able to understand the structural
properties of MRI pictures and extract strong features that are
unique to MRI scans.

Following that, the pre-trained CNN is enhanced further to
function as a classifier for reliably categorizing brain tumors.
This refinement process entails training the CNN on a sizable
dataset. The WGAN-GP discriminator’s final FC layer is
swapped out for a softmax layer during this training phase
to facilitate effective classification tasks. Fig. 4 illustrates the
proposed architecture of this paper.

IV. EXPERIMENT AND RESULT

A. Experimental setup

An NVIDIA GeForce RTX 4070 Ti GPU and a 13th Gen
Intel Core (R) i9-13900K 3.00 GHz CPU were used in the
experimental configuration. The DL models were implemented

using Python’s PyTorch package. The WGAN-GP network
underwent training for 500 iterations, employing a batch size
of 128. For optimization, the Rmsprop [15] optimizer, as
recommended in the original WGAN-GP paper [16], was
used for both the generator and discriminator models, with
a learning rate of 0.0002. Subsequently, the classifier model
underwent training for 50 iterations with 128 batches, utilizing
the 0.00005 learning rate of the Adam optimizer for classifier
optimization.

B. Result analysis

1) WGAN-GP model: Fig. 5 shows the WGAN-GP’s train-
ing loss curve, showing that the generator and discriminator
losses are approaching zero. Discriminator loss is growing,

—— Generator Loss
Discriminator Loss

NI

Loss

Epoch

Fig. 5.  WGAN-GP model’s training loss curve.
while the generator loss is decreasing, according to the loss
curve. This shows that both the generator’s capacity to cre-
ate images that cannot be differentiated from real ones and
the discriminator’s ability to differentiate between created
and actual images are becoming better. Additionally, Fig.
6 presents a selection of generator-generated images, which
closely resemble real MRI images.

2) Classifier model: To assess the efficacy of the classifier
model and enable comparative analysis, a series of metrics
have been employed. The computed metrics encompass Ac-



Fig. 6. Generated images by the WGAN-GPs generator.

TABLE I
RESULTS OBTAINED WITHOUT THE USE OF A WGAN PRE-TRAINER
Class Precision | Recall | F1 score
Glioma 0.91 0.87 0.89
Meningioma 0.84 0.71 0.77
Notumor 0.88 0.99 0.93
Pituitary 0.95 0.97 0.96

curacy, Precision, Recall, F1 score, and the Confusion Matrix.

The explicit formula for each metric is elucidated hereafter.
TP+TN

TP+TN+FP+FN
TP
TP+ FP
TP
TP+FN

Accuracy =

Precision =

Recall =

Fl— 2 % Precision * Recall _ 2xTP
"~ Precision+Recall ~ 2x*TP+FP+FN

where the symbols TP, FN, FP, and TN stand for the
corresponding numbers of true positives, false negatives, false
positives, and true negatives.

Table II showcases the classification results achieved
through the utilization of the WGAN-GP pre-trained model,
while Table I illustrates the outcomes obtained when the model
was not pre-trained. After evaluating the pre-trained model on
test data we have obtained precision values of 96%, 95%,
98%, and 99% for Class Glioma, Class Meningioma, Class
Notoumoar, and Pituitary, respectively. This yields average
precision and accuracy of 97% and 97%, respectively.

Moreover, Fig. 7 visually represents the impact of the pre-
trained model on the learning pace. The results unequivocally
demonstrate that the WGAP-GP model has a notable and
beneficial effect on the speed at which learning occurs.

TABLE II
RESULTS OBTAINED WITH THE USE OF A WGAN-GP PRE-TRAINER

Class Precision | Recall | F1 score
Glioma 0.96 0.95 0.96
Meningioma 0.95 0.94 0.95
Notumor 0.98 1.00 0.99
Pituitary 0.99 0.99 0.99

Epoch

Fig. 7. Comparing the Impact of WGAN-GP Pre-training on Learning Rate
Progression.

The confusion matrix for the classification task was visual-
ized in Fig. 8. Each cell in the matrix’s intensity indicates the
frequency or proportion of samples sorted into certain classi-
fications. The matrix’s color gradient highlights categorization
distribution, with a strong diagonal suggesting accurate clas-
sifications and off-diagonal parts exposing probable mistakes.
This heatmap is a useful tool for analyzing model performance
and discovering predictive models.
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Fig. 8. Confusion matrix of Classifier model.

Upon thorough analysis of the data presented in Table III, it
is clear that when compared to other models, the performance
of the proposed model is comparable in terms of accuracy,
recall, and F1 score.



TABLE III
COMPARISON ANALYSIS WITH OTHER PAPERS
Methods Precision | Recall | F1 score
GoogLeNet [17] 0.94 0.96 0.95
DCGAN [5] 0. 95 0.94 0.95
Dense CNN [18] 0.96 0.96 0.96
Proposed WGAN-GP 0.97 0.97 0.97

V. CONCLUSION

In conclusion, this work suggests a novel semi-supervised
DL approach for brain tumor detection using WGAN-GP.
This technique addresses the problem of scarce labeled data
and shows promising results by efficiently using unlabeled
as well as labeled data. The pre-trained WGAN-GP weights
significantly enhance the accuracy of the classifier model, fur-
ther affirming the efficacy of this approach. The experimental
comparisons with existing techniques highlight the superior
performance of this proposed methodology, underscoring its
potential to advance brain tumor identification and ultimately
contribute to improved patient outcomes.

[1

—

[3]

[4

=

[5]

[6]

[7

—

[8]
[9]

[10]

(11]

[12]

REFERENCES

“Brain tumor: Statistics, https://www.cancer.net/cancer-types/brain-
tumor/statistics.” [Online]. Available: https://www.cancer.org/cancer/
brain-spinal-cord-tumors-adults/about/key- statistics.html

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sanchez,
“A survey on deep learning in medical image analysis,” Medical image
analysis, vol. 42, pp. 60-88, 2017.

R. K. Gupta, S. Bharti, N. Kunhare, Y. Sahu, and N. Pathik, “Brain tumor
detection and classification using cycle generative adversarial networks,”
Interdisciplinary Sciences: Computational Life Sciences, vol. 14, no. 2,
pp. 485-502, 2022.

B. Tahir, S. Igbal, M. Usman Ghani Khan, T. Saba, Z. Mehmood,
A. Anjum, and T. Mahmood, “Feature enhancement framework for
brain tumor segmentation and classification,” Microscopy research and
technique, vol. 82, no. 6, pp. 803-811, 2019.

N. Ghassemi, A. Shoeibi, and M. Rouhani, “Deep neural network with
generative adversarial networks pre-training for brain tumor classifica-
tion based on mr images,” Biomedical Signal Processing and Control,
vol. 57, p. 101678, 2020.

M. A. Gémez-Guzman, L. Jiménez-Beristain, E. E. Garcia-Guerrero,
0. R. Loépez-Bonilla, U. J. Tamayo-Perez, J. J. Esqueda-Elizondo,
K. Palomino-Vizcaino, and E. Inzunza-Gonzilez, “Classifying brain
tumors on magnetic resonance imaging by using convolutional neural
networks,” Electronics, vol. 12, no. 4, p. 955, 2023.

F. E. AlTahhan, G. A. Khougeer, S. Saadi, A. Elgarayhi, and M. Sallah,
“Refined automatic brain tumor classification using hybrid convolutional
neural networks for mri scans,” Diagnostics, vol. 13, no. 5, p. 864, 2023.
M. Nickparvar, “Brain tumor mri dataset,” 2021. [Online]. Available:
https://www.kaggle.com/dsv/2645886

D. S. Marcus, A. F. Fotenos, J. G. Csernansky, J. C. Morris, and
R. L. Buckner, “Open access series of imaging studies: longitudinal mri
data in nondemented and demented older adults,” Journal of cognitive
neuroscience, vol. 22, no. 12, pp. 2677-2684, 2010.

J. S. Paul, A. J. Plassard, B. A. Landman, and D. Fabbri, “Deep learning
for brain tumor classification,” in Medical Imaging 2017: Biomedical
Applications in Molecular, Structural, and Functional Imaging, vol.
10137. SPIE, 2017, pp. 253-268.

A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath, “Generative adversarial networks: An overview,” IEEE
signal processing magazine, vol. 35, no. 1, pp. 53-65, 2018.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” Advances in neural information
processing systems, vol. 30, 2017.

[13]

[14]

[15]

[16]

[17]

[18]

S. Xiang and H. Li, “On the effects of batch and weight normalization
in generative adversarial networks,” arXiv preprint arXiv:1704.03971,
2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent,” Cited on,
vol. 14, no. 8, p. 2, 2012.

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative ad-
versarial networks,” in International conference on machine learning.
PMLR, 2017, pp. 214-223.

S. Deepak and P. Ameer, “Brain tumor classification using deep cnn
features via transfer learning,” Computers in biology and medicine, vol.
111, p. 103345, 2019.

0. Ozkaraca, O. 1. Bagnagik, H. Giiriiler, F. Khan, J. Hussain, J. Khan,
and U. e. Laila, “Multiple brain tumor classification with dense cnn
architecture using brain mri images,” Life, vol. 13, no. 2, p. 349, 2023.



