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Abstract—Skin cancer is one of the most common malignancies
worldwide, with rising incidence rates emphasizing the need for
effective diagnostic and treatment strategies. This study presents
the Attention-Guided U-Net, which incorporates Dynamic Con-
volution and Transformers (ADTNet), a novel deep-learning
architecture specifically designed for skin cancer segmentation.
ADTNet leverages the strengths of dynamic convolution and
transformers within a U-Net framework, enhancing the model’s
ability to accurately detect cancerous regions in skin images.
A key innovation of ADTNet is its integration of attention-
guided mechanisms in the skip connections and transformer
modules located at the bottleneck of the architecture. Dynamic
convolution improves feature extraction by adjusting to the
spatial properties of input images, facilitating more detailed and
accurate segmentation of skin lesions. Through comprehensive
experimentation, we developed a four-stage version of ADTNet,
which achieves an optimal balance between segmentation accu-
racy and computational efficiency. This version yielded a Dice
score of 92.4% and an IoU of 87.2%, demonstrating robust
performance in distinguishing cancerous regions from healthy
tissue. These metrics indicate the model’s potential for practical
implementation in real-world clinical scenarios, where accurate
and efficient segmentation is necessary for effective diagnosis.

Index Terms—Skin Cancer Segmentation, Dynamic Convolu-
tion, Attention Mechanism, Transformer

I. INTRODUCTION

Skin cancer, one of the most prevalent malignancies glob-
ally, arises from uncontrolled growth of malignant cells in
the epidermis. Recent statistics from the American Cancer
Society reveal that over 96,480 new melanoma cases are
diagnosed annually in the U.S., with approximately 7,230
fatalities. This data indicates an increase in the incidence of
melanoma compared to previous years. [1]. Skin cancer is
broadly categorized into melanoma and non-melanoma types,
with melanoma being the deadliest, originating from abnor-
mal melanocyte proliferation. Early detection of melanoma
markedly enhances mortality rates, with a five-year overall
survival rate of 98% for localized cases, dropping to 14%
in advanced stages. Dermoscopy, a non-invasive method, en-
hances visualization of pigmented skin lesions, aiding in better
diagnosis than traditional visual inspection [2]. However, der-
moscopic image interpretation is subjective, relying heavily
on the expertise of dermatologists, and prone to errors [3].
Automated dermoscopy analysis has emerged as a promising
approach to reduce human error and improve diagnostic accu-
racy. However, automatic detection of skin lesions continues

to be difficult due to the wide variation in skin tones, lesion
textures, and the interference caused by artifacts like hair and
shadows. [4]. Early segmentation methods, such as threshold-
based algorithms, often fail to provide accurate results. Recent
breakthroughs in deep learning have transformed medical
image analysis, with designs such as U-Net emerging as the
standard for medical imagery segmentation due to their skip
connections that maintain spatial information [5]. However,
traditional CNNs are limited by their static filters. Dynamic
Convolutional Neural Networks were introduced to address
this, dynamically adjusting filters based on input features,
leading to improved feature extraction [6]. Transformers have
further advanced vision tasks, with Vision Transformers (ViTs)
leveraging attention processes to preserve long-range depen-
dencies by segmenting images into patches [6]. This study
proposes an innovative framework that combines dynamic con-
volution, transformers in the U-Net bottleneck, and attention
mechanisms in skip links to improve skin cancer segmentation
accuracy. Dynamic convolution enhances adaptability, ViTs
capture long-range relationships, and the attention mechanism
focuses on critical features during segmentation. This paper
emphasizes the following key points:

1) We introduce dynamic convolution into the segmentation
framework, allowing convolutional filters to adapt based
on input features.

2) We embed transformers in the bottleneck of the U-
Net architecture, enabling the model to maintain global
context and capture long-range dependencies, enhancing
segmentation accuracy.

The structure of the material is as follows: Section Section II
examines recent progress in skin cancer segmentation. Sec-
tion Section III delineates the materials and methodologies
employed. Section Section IV delineates the experiments and
analyzes the results. Ultimately, Section V conclude the final
observations.

II. RELATED WORK

Advancements in deep learning, especially in computer
vision, have led to substantial progress in skin lesion seg-
mentation. One of the foundational works in this domain is
UNet [7], which introduced skip connections, allowing feature
information from the encoder to be directly utilized by the
decoder. These skip connections mitigate information loss
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during downsampling, leading to improved segmentation out-
comes. However, different medical imaging tasks often require
specialized networks to enhance feature learning for specific
datasets. Consequently, several extensions and variations of
the UNet architecture have been proposed, including UNet++
[8], UNet3+ [9], R2U-Net [10], and CE-Net [11]. While these
models show promising results in various tasks, they share a
common limitation—the reliance on convolutional operations.
Convolution, by nature, struggles to capture global contextual
information, which limits its generalization capability in more
complex tasks. Researchers have adopted transformer-based
topologies to overcome these intrinsic restrictions. Initially
developed for natural language processing purposes, trans-
formers have also demonstrated notable efficiency in visual
tasks. The ViT [6] was an innovative study that utilized the
transformer architecture for image classification by segmenting
pictures into patches and processing them in sequence. This
innovation inspired further developments in image segmenta-
tion. For instance, Valanarasu et al. [12] proposed a medi-
cal image detection method leveraging gated axial attention
combined with transformers. Chen et al. [13] introduced
TransUNet, a hybrid model that integrates the advantages of
U-Net and transformer designs, yielding significant outcomes
in multi-organ and cardiac segmentation tasks. In summary,
while traditional convolution-based models have demonstrated
remarkable performance in skin lesion segmentation, their
limitations in global feature representation have prompted the
adoption of transformer-based models. These advancements
not only address the shortcomings of convolutional networks
but also provide a robust framework for tackling complex
medical image segmentation challenges.

III. MATERIAL AND METHODS

This section introduces our proposed model, ADTNet,
specifically developed for skin cancer segmentation. The archi-
tecture of ADTNet is built upon a U-Net framework, featuring
a U-shaped backbone that comprises both an encoder and
a decoder. Within this architecture, we utilize the Residual
Dynamic Convolution (RDC) module as a core component
for feature extraction. To enhance the model’s performance, an
attention-guided layer is integrated into the skip connections
of ADTNet, while a transformer module is incorporated within
the bottleneck of the U-Net structure. The comprehensive
design of ADTNet is depicted in Fig. 5.

A. RDC Module

The Residual Dynamic Convolution (RDC) module is a
critical component of our proposed ADTNet architecture,
aimed at improving the feature extraction abilities essential for
skin cancer segmentation. This module employs a residual link
to ensure the seamless transmission of information, thereby
mitigating the vanishing gradient problem frequently observed
in deep neural networks [14]. At the core of the RDC module
is the dynamic convolution, which allows the convolutional
filters to adapt based on the input features [15]. The construc-
tion of the dynamic convolution is depicted in Fig. 2. First,

BatchNorm

ConvTranspose2d

Dynamic Conv2d
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Fig. 1. Architectures of UpConv and RDC Modules. (a) Structure of
the UpConv module utilized in the ADTNet architecture, showcasing the
upsampling process to restore spatial resolution. (b) Detailed architecture of
the RDC module.

a 2D Adaptive Average Pooling layer compresses the spatial
information, making the subsequent processing more robust
to variations in input size. Next, two 2D Convolution layers
are applied, with the first convolutional layer paired with a
ReLU activation function used to integrate non-linearity within
the model. The second convolutional layer is succeeded by
Softmax activation methods, producing normalized attention
weights for the convolution kernels. This approach enables the
model to focus on the most relevant aspects of the data, thereby
enhancing the effectiveness of the dynamic convolution.
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Fig. 2. Illustration of the Dynamic Convolution structure, featuring adaptive
average pooling, convolutional layers, and attention weight generation.

The structure of the RDC module is illustrated in Fig. 1(b).
The RDC module handles input data via two consecutive
blocks. Each block contains several essential components:
the initial block includes dynamic convolution, batch nor-
malization, and dropout layers. After the dynamic convo-
lution, Batch Normalization is implemented to stabilize the
learning process. This technique normalizes activations, hence
accelerating convergence and enhancing the model’s overall
robustness. A Dropout layer is implemented after the batch
normalization process to mitigate overfitting. We incorporate
a ReLU activation function following the dropout layer to
bring further non-linearity into the model. The skip connection
layer of the RDC module includes dynamic convolution,
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batch normalization, and dropout layers, in addition to the
sequential blocks. The outputs from the skip connection layer
and the sequential blocks are concatenated, enhancing the
representation of features.

B. Attention Module

In our proposed ADTNet architecture, we incorporate an
attention mechanism to enhance the functionality of the skip
connections. This process efficiently generates a query accom-
panied by a collection of key-value pairs, yielding an output
calculated as a weighted sum of the values. The weights are de-
termined through the attention mechanism, which establishes a
compatibility metric between the query and its associated keys.
The implementation of the attention-based skip connection is

Decoder feature

Encoder feature Convolution
BatchNorm

Convolution
BatchNorm

SoftmaxReLu

Fig. 3. Visualization of the attention-based skip connection mechanism,
demonstrating the integration of encoder and decoder features.

illustrated in Fig. 3. In our network architecture, inputs from
both the encoder and decoder sides are directly fed into the
attention module. The operational principle of the attention
layers can be described mathematically. The encoder generates
H hidden state vectors, each with a dimension of α . The input
shape for the feedforward layer then becomes (H,2α). Upon
adding a bias term σ , this input P is multiplied by a weight
matrix W of shape (2α,1). The resulting score K is generated,
yielding an output with a dimension of (H,1) as represented
in Eq. 1.

K = P[H ∗2α]∗W [2α ∗1]+σ [H ∗1] (1)

Q = so f tmax(tanh(K)) (2)

Out put = Input term∗Q (3)

Following this, the score S is processed through a hyperbolic
tangent function, followed by a so f tmax activation function.
The output of this process, denoted as Q, is subsequently
multiplied by one of the input terms. In this approach, skip
links are used to establish connections between the encoder
and decoder. The attention mechanism assigns weights to
feature maps at each level based on their importance, enabling
the model to focus on the most relevant features during the
segmentation process.

C. Transformer Module

Our proposed ADTNet architecture incorporates a trans-
former module at the bottleneck to understand long-distance
dependencies and gather global contextual information. The
input feature maps are split into patches and processed through
attention mechanisms based on the ViT framework. The main
block of this transformer module is the Multi-Head Self-
Attention (MHSA) mechanism. First, the input feature map

N
or
m

M
H
A

N
or
m

M
LP

Em
be
dd
in
g

Fig. 4. Illustration of the transformer architecture integrated within the
ADTNet, highlighting the self-attention mechanism and positional encoding.

X is projected into query Q, key K, and value V matrices and
the attention score is calculated as follows:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V

Where dk denotes the dimension of the key vectors. The
MHSA output is generated by concatenating the outputs from
each attention head and applying a linear transformation:

MHSA(Q,K,V ) = Concat(H1, . . . ,Hn)PO

where PO is the output projection matrix, and n is the number
of attention heads. This output is passed through a feedforward
neural network (MLP) comprising two fully connected layers
with ReLU activation:

MLP(X) = ReLU(XW1 +b1)W2 +b2

where W1, W2 represent the weight matrices, and b1, b2 are
the bias terms. Both MHSA and MLP blocks are followed by
layer normalization:

Norm(X) =
X −mean

standard deviation
Additionally, residual connections are applied to the outputs
of both the MHSA and MLP blocks, leading to the final
transformer module output:

Output = X +MLP(MHSA(X))

D. Proposed ADTNet

This paper introduces ADTNet for segmenting skin lesions.
ADTNet extends the U-Net framework by incorporating dy-
namic convolutions, transformers, and attention mechanisms,
enhancing segmentation accuracy and feature extraction capa-
bilities. ADTNet’s design adheres to a conventional U-shaped
encoder-decoder framework. The encoder path consists of four
stages, each stage comprising an RDC module, which inte-
grates two dynamic convolutional layers, batch normalization,
ReLU activation, and dropout layers. After each block, a max-
pooling layer is applied to reduce feature map dimensions
while preserving essential information. In total, the encoder
features 8 convolutional layers across its four stages. We in-
corporate a transformer module with an MHSA mechanism at
the architecture bottleneck, therefore augmenting the model’s
capacity to capture long-range dependencies and global con-
text. This module comprises multi-head attention and feedfor-
ward layers, succeeded by normalization layers. The decoder
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Maxpool Layer

Concatenation
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Fig. 5. Overview of the ADTNet architecture, highlighting the integration of RDC modules for adaptive feature extraction, attention-guided skip connections
to focus on critical features, and transformers for capturing long-range dependencies. The variables H and W represent the height and width of the feature
maps, respectively.

path mirrors the encoder and contains four UpConvolution
(UpConv) modules, which consist of transpose convolutional
layers to upsample the feature maps, restoring them to their
original resolution. The configuration of the UpConv module
is depicted in Fig. 1(a). Skip links interconnect the relevant
encoder and decoder layers, augmented by an attention module
to emphasize the most significant elements of the encoder. The
attention mechanism highlights important areas in the feature
maps, allowing ADTNet to focus on the most critical areas
for segmentation. Finally, a 1×1 convolution layer is applied
to generate the output segmentation map, where each pixel
is classified as either cancerous or non-cancerous. The design
of ADTNet is illustrated in Fig. 5, where the RDC module,
attention module, and transformer module are organized to
maximize feature extraction and segmentation performance.

IV. RESULTS AND DISCUSSION

A. Dataset description

Fig. 6. Visualization of Data Samples from the ISIC 2018 Dataset top row
presents skin cancer images, while the bottom row shows the corresponding
ground truth masks.

In this study, we utilized the International Skin Imaging
Collaboration (ISIC) 2018 dataset, a widely used benchmark

for skin cancer segmentation tasks [16]. The dataset comprises
2,594 dermoscopic RGB images, each accompanied by its
corresponding ground truth segmentation mask. The average
resolution of the images is 2166×3188 pixels, providing high-
quality data for accurate segmentation. To ensure a compre-
hensive assessment, we adhered to the established approach
and partitioned the dataset into training, validation, and test
subsets. A total of 1,815 images were utilized for training,
259 for validation, and 520 for testing. To enhance computa-
tional performance, all photos were downsized to 128× 128
pixels. No data augmentation techniques were applied in this
experiment, apart from standard data normalization. Both the
images and their corresponding masks were cropped uniformly
to maintain consistency. Fig. 6 presents a visual representation
of various samples alongside their corresponding ground truth
masks from the ISIC 2018 dataset.

B. Evaluation Criteria

In this study, we compute the Dice Coefficient Score (Dice),
Intersection over Union (IoU), and Sensitivity (SEN) to assess
model performance comprehensively. These metrics are calcu-
lated as following equations:

Dice =
T P

2∗T P+FN +FP

IoU =
T P

T P+FN +FP

SEN =
T P

T P+FN
The symbols T P, FN, FP, and T N denote the counts of true
positives, false negatives, false positives, and true negatives,
respectively. A cancerous pixel region is classified as a true
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TABLE I
COMPARISON OF DICE, IOU, AND SEN FOR THE 3-STAGE, 4-STAGE, AND

5-STAGE ADTNET ARCHITECTURES.

Model Stage Dice (%) IoU (%) SEN(%)
3-stage 89.4 82.3 90.2
4-stage 92.4 87.2 93.4
5-stage 92.9 87.9 92.4

positive when the model accurately identifies it as cancerous;
conversely, it is labeled as a false positive if the model
incorrectly identifies it as cancerous. Similarly, a normal skin
pixel region is labeled as a true negative when correctly
detected as normal, but if misclassified, it is considered a false
negative.

C. Experimental setup

The experiments utilized an NVIDIA Tesla P100 GPU with
16GB of RAM. The ADTNet model was implemented using
the PyTorch framework in Python, and training was performed
over 30 epochs with a batch size of 8. The Adam optimizer was
utilized with a learning rate of 0.001, while all other hyper-
parameters were maintained at their default values to ensure
uniformity. This configuration enabled efficient convergence
and resulted in improved accuracy for segmenting skin cancer
regions. For the segmentation tasks, the primary loss function
employed was Dice loss [17].

D. Result analysis

In this work, we thoroughly investigated different configu-
rations of our proposed ADTNet architecture for skin cancer
segmentation. Specifically, the model was evaluated with 3,
4, and 5 stages, examining its performance using standard
metrics such as the Dice coefficient, IoU, and SEN. The
outcomes of these tests are encapsulated in Table I. The 3-stage
ADTNet architecture achieved a Dice score of 89.4%, IoU
of 82.3%, and a sensitivity of 90.2%. When the architecture
was expanded to 4 stages, performance improved, yielding
a Dice score of 92.4% and IoU of 87.2%, with sensitivity
better at 93.4%. The 5-stage ADTNet exhibited marginal
improvements over the 4-stage version, achieving Dice, IoU,
and SEN scores of 92.9%, 87.9%, and 92.4%, respectively.
The results indicate that adding stages from 3 to 4 substantially
enhanced the segmentation accuracy, as the 4-stage model was
able to capture more complex patterns and features from the
dermoscopic images. However, the performance improvement
from 4 to 5 stages was minimal, suggesting that increasing the
model depth beyond four stages led to diminishing returns. In
terms of computational complexity, the number of parameters
for each model architecture is provided in Table II. The 3-
stage model consisted of 15.9 million(M) parameters, while
the 4-stage and 5-stage models had 60.4M and 234.6M pa-
rameters, respectively. Although the 5-stage model achieved
a slightly higher score, the increase in computational cost
was significant, making the 4-stage model a more optimal
solution. Therefore, we selected the four-stage ADTNet as

TABLE II
PARAMETER COUNT FOR THE 3-STAGE, 4-STAGE, AND 5-STAGE ADTNET

ARCHITECTURES.

Model Stage Parameters (M)
3-stage 15.9
4-stage 60.4
5-stage 234.6

the best configuration for our proposed approach, striking
a balance between segmentation accuracy and computational
efficiency. The performance of the ADTNet model was moni-
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0.08

0.10

0.12
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0.18

Lo
ss
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Fig. 7. Loss curves depicting the training and validation performance of the
ADTNet model over 30 epochs.

tored through the training and validation loss curves, as shown
in Fig. 7. The steady decrease in both losses throughout 30
epochs demonstrates that the model successfully learned the
intricate patterns within the dataset without overfitting. After
30 epochs, the training loss converged to 0.074, while the
validation loss stabilized at 0.068. This consistency between
training and validation losses serves as a robust sign of
the model’s ability to generalize. Fig. 8 presents qualitative

Fig. 8. Examples of model predictions compared with ground truth annota-
tions from the test dataset.

results from the test set, showcasing several examples of
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TABLE III
COMPARISON OF ADTNET PERFORMANCE WITH STATE-OF-THE-ART

MODELS ON THE ISIC 2018 DATASET.

Methods Dice (%) IoU (%) SEN (%)
UNet [18] 88.5 81.6 88.4

AttUNet [19] 88.6 81.7 88.9
CPFNet [20] 89.7 83.0 90.0

GFANNet [21] 90.1 83.5 90.0
Proposed ADTNet 92.4 87.2 93.4

predicted segmentation masks alongside their corresponding
ground truth annotations. These visualizations highlight the
accuracy of our model in detecting and segmenting skin cancer
regions, even in challenging cases where the lesions may
vary in size, shape, and texture. Finally, we compared our
ADTNet model with several state-of-the-art architectures on
the ISIC 2018 dataset. The comparative results, detailed in
Table III, indicate that our proposed ADTNet outperformed
existing models in terms of key metrics such as Dice, IoU,
and SEN. The superior performance of our model underscores
the effectiveness of incorporating dynamic convolutions and
transformer-based attention mechanisms in the segmentation
pipeline.

V. CONCLUSION

This study presents ADTNet, a deep learning architecture
for skin cancer segmentation, utilizing dynamic CNNs and
transformers within a U-Net framework. The key innovation
lies in integrating attention-guided mechanisms in the skip
connections and transformer modules in the U-Net bottleneck,
alongside dynamic CNNs for feature extraction. Extensive
experiments were conducted using the ISIC 2018 dataset,
where 3, 4, and 5-stage variations of ADTNet were evalu-
ated. The 4-stage ADTNet achieved the best balance between
segmentation accuracy and computational efficiency, yielding
a Dice score of 92.4% and an IoU of 87.2%. It outperformed
both the 3-stage and 5-stage models, with significantly reduced
complexity compared to the 5-stage variant. Moreover, our
approach demonstrated competitive results compared to state-
of-the-art models. These findings underscore the potential of
ADTNet for accurate and efficient skin cancer segmentation,
making it a promising tool for clinical applications in der-
matology. Future work will focus on expanding the model’s
generalization to other datasets, incorporating additional image
pre-processing techniques, and exploring lightweight architec-
tures for real-time applications in clinical settings. Despite
the promising results, further evaluation on more diverse
and challenging datasets is required to ensure its adaptability
across different skin cancer types and imaging conditions.
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