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Abstract—Skin cancer ranks as the most common type of
cancer worldwide. In this study, we present EF-SwinNet, a
hybrid architecture combining EfficientNet and swin transformer
models, designed to classify skin lesions with high accuracy. The
dataset used for training and testing the model is HAM10000,
which is known for its imbalance. In order to tackle this
problem, we implemented several data augmentation methods
to successfully alleviate the problem of classification imbalance.
Our empirical findings illustrate the exceptional efficacy of the
suggested hybrid model, attaining an average accuracy of 98%
and an F1 score of 96%. Furthermore, we employed the Grad-
CAM technique to offer a deeper understanding of the learning
process of the model by graphically representing the significance
of various features. Finally, we analyze the performance of
our model by comparing it with current cutting-edge methods,
emphasizing its improvements in the classification of skin cancer.

Index Terms—Skin Cancer Classification, CNN, Swin Trans-
former, Deep Learning

I. INTRODUCTION

Skin cancer, both melanoma and nonmelanoma, is one of the
most prevalent cancers globally, with rising cases, especially
in regions like the United States, where skin cancer cases
exceed those of all other cancers combined, highlighting the
need for early and accurate detection to improve outcomes [1].
Traditional diagnostic methods, including visual inspection
and dermoscopy, are highly dependent on clinician expertise,
which can result in variable accuracy [2]. Even with improved
dermoscopic techniques, diagnostic precision remains around
75-84%, often below the level needed for consistent early
detection [3]. Deep learning models, especially convolutional
neural networks (CNNs), have shown promise in automating
skin lesion analysis but face limitations. CNNs excel in
extracting localized features but struggle with global con-
text, which is critical for complex lesion classification [4].
Transformers, with their ability to model long-range depen-
dencies, address this limitation. Vision Transformers and Swin
Transformers, for instance, capture global and hierarchical
features, outperforming CNNs in some tasks [5]. However,
effectively integrating transformers and CNNs into an efficient,
interpretable model for medical imaging remains challenging.
This work introduces EF-SwinNet, a hybrid model designed
to balance feature extraction, computational efficiency, and
interpretability, crucial for clinical use. Class imbalance in skin

cancer datasets like HAM10000, where common classes dom-
inate, poses an additional challenge. EF-SwinNet combines
EfficientNet and Swin Transformer to address these issues,
with contributions detailed as follows:

1) We developed a novel hybrid model combining Efficient-
Net with the swin transformer to enhance skin cancer
classification accuracy.

2) We incorporated Grad-CAM to provide visual expla-
nations of the model’s predictions, which improves
transparency and clinical relevance.

The paper is structured as indicated below: Latest develop-
ments are reviewed in Section Section II. In Section Sec-
tion III, the materials and procedures employed are detailed.
In Section Section IV, the experiments are described and the
findings are shown. Section Section V finalizes the findings of
the work.

II. RELATED WORK

The field of skin cancer detection has seen significant
advancements with the adoption of machine learning (ML)
and deep learning models. Early approaches used handcrafted
features based on asymmetry, border, color, and diameter
attributes to identify lesions, with promising but limited
results [6]. In another example, Saez et al. [7] achieved
moderate accuracy in melanoma classification using logistic
regression and artificial neural networks (ANN) to assess
lesion thickness. However, these traditional ML techniques
rely heavily on manual feature extraction, which can introduce
subjectivity and limit diagnostic accuracy. With the advent
of deep learning, CNNs have increasingly automated feature
extraction for skin lesion analysis. Shete et al. [8] uses CNNs
to address the challenges of feature localization, achieving
88.0% accuracy. Despite these advances, CNNs often struggle
to capture the global context required for classifying com-
plex medical images. To address this, recent studies have
integrated transformers, which excel at modeling long-range
dependencies. For instance, Xie et al. [9] proposed Swin-
SimAM, a combination of Swin Transformer with SimAM
attention, specifically for melanoma detection, while Eskandari
et al. [10] applied a hierarchical transformer model for skin
lesion segmentation. These transformer-based approaches have
shown potential, but challenges remain in effectively com-
bining local and global feature extraction without excessive
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computational costs. Our proposed model, EF-SwinNet, im-
proves upon previous approaches by combining the strengths
of EfficientNet, known for its parameter efficiency, with Swin
Transformer’s hierarchical feature extraction capabilities. This
hybrid architecture addresses several limitations identified in
prior work. First, while CNN-based models excel in extracting
localized features, they lack the ability to capture broader
context across an image, a limitation addressed by Swin
Transformer’s shifted window attention mechanism.

III. MATERIAL AND METHODS

A. Dataset description and data processing

The dataset utilized for training and evaluating our model
is the HAM10000 dataset, compiled by the ISIC in 2018
[11]. The dataset is an openly accessible collection of 10,015
dermatoscopic images that depict seven different types of
skin diseases: basal cell carcinoma (BCC), actinic keratoses
and intraepithelial carcinoma (AKIEC), dermatofibroma (DF),
benign keratosis-like lesions (BKL), melanocytic nevi (NV),
vascular lesions (VASC), and melanoma (MEL). The dataset
distribution is as follows: 327 AKIEC images, 514 BCC
images, 1,029 BKL images, 115 DF images, 1,113 MEL
images, 6,705 NV images, and 142 VASC images. A major
challenge associated with this dataset is the class imbalance,
as illustrated in Fig. 1. Specifically, the NV class dominates,
accounting for 66.9% of the total images. The dataset was

Categories and Data Splits
AKIEC - Train
AKIEC - Test
BCC - Train
BCC - Test
BKL - Train
BKL - Test
MEL - Train
MEL - Test
NV - Train
NV - Test
DF - Train
DF - Test
VASC - Train
VASC - Test

Fig. 1. Distribution of train and test data across skin cancer categories,
visualized with distinct patterns for train (//) and test (..) sets. Categories
include AKIEC, BCC, BKL, MEL, NV, DF, and VASC.

preprocessed by resizing all images to 384×384 pixels. Next,
we divided the dataset into training and testing sets using
an 80-20 ratio partition. The training set consists of 297
AKIEC, 479 BCC, 1,011 BKL, 1,067 MEL, 5,822 NV, 107
DF, and 129 VASC images, while the testing set includes 30
AKIEC, 35 BCC, 88 BKL, 46 MEL, 883 NV, 8 DF, and
13 VASC images. To mitigate the class imbalance, various
data augmentation techniques were applied to the training
set, artificially increasing the diversity of the underrepresented
classes. These augmentations include random rotations, flips,
zooms, and shifts, ensuring the model can generalize across

TABLE I
DATA AUGMENTATION TECHNIQUES AND PARAMETERS

Augmentation Technique Description Parameter Value
Rotation Rotates images randomly. 180°
Width Shift Horizontally shifts images. 10%
Height Shift Vertically shifts images. 10%
Zoom Zooms in/out on images. 10%
Horizontal Flip Horizontally flips images. True
Vertical Flip Vertically flips images. True
Fill Mode Fills pixels after shifts/rotations. fill mode=’nearest’

different categories. The augmentation parameters are pro-
vided in Table I. Fig.2 showcases examples of data before
and after augmentation, demonstrating the efficacy of these
techniques in balancing the dataset.

(a)

(b)

Fig. 2. (a) Images before applying augmentation.(b) Images after applying
augmentation.

B. Skin Cancer Classification using EF-SwinNet

In this study, we propose a hybrid architecture that leverages
the complementary strengths of the swin transformer and
EfficientNet models. The swin transformer, a core component
of our architecture, is built on the principles of hierarchical
feature maps (HFM) and shifted window attention (SWA).
HFM enables the model to manage image features across mul-
tiple scales, facilitating efficient processing of high-resolution
medical images without relying on standard convolutional
operations. The patch merging technique within the swin
transformer reduces feature map resolution by merging ad-
jacent patches, preserving critical image information while
optimizing computational efficiency. SWA, by employing win-
dowed self-attention, ensures both local and global contexts
are effectively captured, a key requirement for identifying
subtle patterns in medical imagery, such as skin lesions.
EfficientNet complements the swin transformer by providing a
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Fig. 3. Proposed architecture for the EF-SwinNet model.
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TABLE II
RESULTS DERIVED FROM OUR PROPOSED EF-SWINNET MODEL.

Class Precision Recall F1 score
AKIEC 0.90 0.90 0.90

BCC 0.97 0.97 0.97
BKL 0.96 0.93 0.95
DF 1.0 1.0 1.0

MEL 0.95 0.89 0.92
NV 0.99 1.0 0.99

VASC 1.0 1.0 1.0

parameter-efficient, high-performance convolutional network,
which excels in handling large-scale image datasets. The
model’s lightweight design, coupled with fast training times,
makes it particularly suitable for deployment on resource-
limited devices, such as mobile platforms or embedded sys-
tems, without sacrificing classification accuracy. The hybrid
model processes input images through two distinct pathways.
The first pathway directs the input through the EfficientNet
network, followed by a convolutional block and a CNN
head that integrates a GlobalAveragePooling2D layer. The
second pathway processes the input via an embedding layer,
swin transformer layers, and a patch merging layer, which
ultimately feeds into a transformer head composed of a Glob-
alAveragePooling2D layer and a BatchNormalization layer.
The results from both paths are combined and then fed into a
final classifier that includes a fully connected layer specifically
designed to generate probabilities for different skin cancer
classes. In the swin transformer configuration, we employ
an 8× 8 patch size, a 64-dimensional embedding space, and
a multi-layer perceptron (MLP) with 128 units. This setup,
when combined with EfficientNet, maximizes the model’s
classification potential by harnessing the swin transformer’s
hierarchical feature extraction alongside EfficientNet’s com-
putationally efficient structure. The synergy between these
architectures yields a robust model capable of accurately
predicting skin cancer classes, offering a significant tool for
advancing diagnostic precision in medical imaging.

IV. EXPERIMENT AND RESULT
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Fig. 4. EF-SwinNet training versus validation loss curve.

The EF-SwinNet model was implemented using the Ten-
sorFlow library and trained on a workstation with an NVIDIA

RTX 3090 GPU, 64GB RAM, and Intel i7 CPU. The Adam
optimizer was employed with a learning rate of 0.001, batch
size of 32, and weight decay of 1e-4. This setup was carefully
selected to ensure efficient processing and to support the
high computational demands of both EfficientNet and Swin
Transformer components, which are critical for handling large
image datasets like HAM10000. The model was trained for
20 epochs, with performance monitored through loss curves,
shown in Fig. 4. These curves indicate a consistent decrease
in both training and validation loss, suggesting effective learn-
ing without overfitting. To assess EF-SwinNet’s classification
performance, we used standard evaluation metrics—accuracy,
precision, recall, and F1 score—on a test dataset reserved
specifically for this purpose [12]. Table II summarizes the
model’s performance across each class, and Fig. 5 provides a
normalized confusion matrix for a detailed view of correct and
incorrect predictions. The analysis reveals that EF-SwinNet

Fig. 5. Normalized confusion matrix showing the model’s performance across
skin lesion categories, with values representing the proportion of correct and
incorrect predictions, adjusted for class imbalance.

performs well across most skin cancer classes. The AKIEC
class attained a balanced performance with accuracy, recall,
and F1 score of 90%, reflecting its ability to detect cases
effectively while minimizing false positives. The BCC class
achieved even higher scores, with 97% across all metrics,
showcasing EF-SwinNet’s strength in identifying this common
type of skin cancer. For the BKL class, the model also
performed well, achieving precision, recall, and F1 scores of
96%, 93%, and 95%, respectively. Both the DF and VASC
classes achieved perfect scores of 100% across all metrics,
highlighting the model’s effectiveness in detecting these less
common conditions. For the MEL (melanoma) class, however,
performance was slightly lower, with a precision of 95%, recall
of 89%, and F1 score of 92%. Although these metrics remain
high, the reduced recall suggests that some melanoma cases
were missed—a critical consideration given the aggressive
nature of melanoma. For the NV class, the model achieved
99% precision, 100% recall, and 99% F1 score, underscoring
EF-SwinNet’s robustness in differentiating between benign
and malignant lesions.
EF-SwinNet’s design combines EfficientNet and Swin Trans-
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former to leverage the strengths of both architectures. Effi-
cientNet provides a lightweight, parameter-efficient convolu-
tional backbone, which enables efficient processing of high-
resolution images with fewer computational resources. This is
particularly important in medical applications where compu-
tational efficiency and speed are essential. Swin Transformer,
on the other hand, enhances the model’s ability to capture
both local and global context within images using hierarchical
feature extraction and shifted window attention. This dual-
pathway approach effectively captures nuanced details and
global dependencies critical for distinguishing similar skin
cancer classes. When comparing EF-SwinNet’s results to other
models (e.g., Inception-ResNet [13] with 83% accuracy and
MobileNet [14] with 92% accuracy), it is evident that the
hybrid structure of EF-SwinNet offers superior performance,
achieving 98% accuracy and a 96% F1 score. While differ-
ences in experimental setups exist, such as variations in dataset
preprocessing and augmentation techniques, EF-SwinNet’s
hybrid approach clearly contributes to its higher classification
accuracy, emphasizing the model’s adaptability in handling
both common and rare skin cancer classes.
EF-SwinNet’s integration of Grad-CAM visualization adds

Fig. 6. Grad-CAM visualization highlighting the regions of the skin lesions
the model focuses on for classification, emphasizing the key factors in its
decision-making process to ensure interpretability.

interpretability, making it more clinically applicable. Grad-
CAM allows clinicians to see the regions that influenced the
model’s decisions, enhancing trust and facilitating validation
of the model’s classifications. Fig. 6 shows that EF-SwinNet
consistently focuses on clinically relevant regions of skin
lesions, confirming its reliability as a diagnostic tool. This
transparency is essential in medical imaging, where under-
standing the rationale behind predictions can impact diagnostic
decisions.

TABLE III
COMPARISON ANALYSIS WITH OTHER PAPERS

Methods Accuracy Precision F1 score
Inception-ResNet [13] 0.83 0.72 0.69

MobileNet [14] 0.92 0.87 0.84
Ensemble Net [15] 0.93 0.88 0.84

Proposed EF-SwinNet 0.98 0.97 0.96

V. CONCLUSION

This study introduced a hybrid model combining Effi-
cientNet with the Swin Transformer to improve skin cancer
classification. The model achieved high precision, recall, and
F1 scores, particularly for BCC and NV, with Grad-CAM visu-
alizations confirming its focus on clinically relevant regions.
However, lower performance in AKIEC and MEL suggests
the need for addressing data imbalance. Future work will
explore oversampling methods like SMOTE and advanced
augmentation techniques to improve these underrepresented
classes. We also plan to expand the dataset, optimize the model
for real-time clinical use, and explore advanced architectures.
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